A scalable framework for cluster ensembles

نویسندگان

  • Prodip Hore
  • Lawrence O. Hall
  • Dmitry B. Goldgof
چکیده

An ensemble of clustering solutions or partitions may be generated for a number of reasons. If the data set is very large, clustering may be done on tractable size disjoint subsets. The data may be distributed at different sites for which a distributed clustering solution with a final merging of partitions is a natural fit. In this paper, two new approaches to combining partitions, represented by sets of cluster centers, are introduced. The advantage of these approaches is that they provide a final partition of data that is comparable to the best existing approaches, yet scale to extremely large data sets. They can be 100,000 times faster while using much less memory. The new algorithms are compared against the best existing cluster ensemble merging approaches, clustering all the data at once and a clustering algorithm designed for very large data sets. The comparison is done for fuzzy and hard k-means based clustering algorithms. It is shown that the centroid-based ensemble merging algorithms presented here generate partitions of quality comparable to the best label vector approach or clustering all the data at once, while providing very large speedups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce

Classification and regression tree learning on massive datasets is a common data mining task at Google, yet many state of the art tree learning algorithms require training data to reside in memory on a single machine. While more scalable implementations of tree learning have been proposed, they typically require specialized parallel computing architectures. In contrast, the majority of Google’s...

متن کامل

Bayesian Cluster Ensembles

Cluster ensembles provide a framework for combining multiple base clusterings of a dataset to generate a stable and robust consensus clustering. There are important variants of the basic cluster ensemble problem, notably including cluster ensembles with missing values, as well as row-distributed or column-distributed cluster ensembles. Existing cluster ensemble algorithms are applicable only to...

متن کامل

Dynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture

Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...

متن کامل

Adaptive Cluster Ensemble Selection

Cluster ensembles generate a large number of different clustering solutions and combine them into a more robust and accurate consensus clustering. On forming the ensembles, the literature has suggested that higher diversity among ensemble members produces higher performance gain. In contrast, some studies also indicated that medium diversity leads to the best performing ensembles. Such contradi...

متن کامل

An Overview of the Galaxy Management Framework for Scalable Enterprise Cluster Computing

In this paper we present the main concepts behind the Galaxy cluster management framework. Galaxy is focused on servicing large-scale enterprise clusters through the use of novel, highly scalable communication and management techniques. Galaxy is a flexible framework built upon the notion of low-level management of cluster farms, where within these farms islands of specific cluster management t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern recognition

دوره 42 5  شماره 

صفحات  -

تاریخ انتشار 2009